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Abstract

The majority of energy-system or power-system planning models relies on optimization to compute the
long-run or intertemporal market equilibrium. In deregulated energy/electricity markets, investments
in most energy assets are made by private companies, aiming to maximize profits. In this context, the
decisions made by these companies depend on their behavioral characteristics (e.g., strategic behavior,
risk-averse behavior) as well as the market design and policies in place. However, optimization models
face certain restrictions in representing some of these elements. This paper aims to provide insights in
the ability and the limitations of optimization models for computing market equilibria. To this end, we
analyze the relation between optimization and equilibrium models and derive a framework which allows
modelers to assess whether a given equilibrium problem can be cast into an optimization model. We
then apply this framework to illustrate the inherent limitations of optimization models for examples of
equilibrium problems, which are relevant in the context of investment planning.
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1 Introduction

1.1 The Changing Role of Long-term Energy-system Planning Models

The first applications of mathematical long-term power-system and energy-system planning models have
taken place before the liberalization of the European energy/electricity markets. In that context, a central
planner (e.g., a government or a state-owned or regulated utility) faced the problem of determining a
long-term investment plan that minimizes the total cost of the energy provision. As such, long-term
planning models, formulated as optimization problems, were developed.

In the context of a broader wave of deregulation of the Western economies, economists argued that
competitive energy/electricity markets would provide better incentives for making efficient capacity ex-
pansion and operational decisions, which should ultimately lead to lower prices for consumers. For these
reasons, during the 1980s-1990s, a gradual process of liberalization of the energy system (e.g., electricity
and gas markets) has started (1). In essence, this process involved the unbundling of generation and
retail activities from transmission and distribution activities, the introduction of competitive markets for
generation and supply (retail) of electricity and gas, the introduction of natural monopolies for transmis-
sion and distribution, and the introduction of an independent regulator in charge of monitoring both the
market-activities (generation and supply) and the regulated activities (transmission and distribution)
(2, 3). Since the liberalization and deregulation of the energy markets, infrastructure investment and
operational decisions are made by private companies aiming to maximize their profits. Hence, there is
no longer a central authority that plans the energy system in order to maximize welfare.

As a result of the deregulation, the role of long-term planning models has changed from determining
the optimal investment planning for direct execution to steering the market outcome in the desired
direction (4). In this regard, long-term energy-system planning models form valuable tools for policy
making. Typically, these models are used to analyze and compare a number of distinct scenarios, i.e.,
possible transition pathways of the considered energy system. Depending on the question that needs
to be addressed, different types of scenario exercises can be performed. One can distinguish between
normative/prescriptive scenarios and descriptive scenarios.

In normative or prescriptive scenarios, one is typically interested in determining the optimal transition
pathway of the energy system towards achieving a desired future state. A typical example is when
one would like to achieve a certain share of renewable energy sources (RES) or a certain reduction of
greenhouse gas emissions within a certain timeframe, and the questions that one wants to answer have a
normative character, e.g., which energy sectors should decarbonize first, which technologies are essential
for achieving the target cost effectively, etc. As such, normative scenarios provide information about the
ideal transition of an energy system towards the stated objective (how do we want the energy system to
evolve?) (5, 6).

Descriptive scenarios, on the other hand, do not impose a desired future state, but rather aim to
describe a likely evolution of the energy system, i.e., how do we expect the energy system to evolve given
certain assumptions on fuel prices, technology cost evolutions, policy interventions and market design.
Such scenarios can be used for instance to evaluate whether certain policy measures or a market design
could achieve the desired state, and if so, under which conditions (7). For instance, policy-makers could
decide to implement a subsidy scheme for solar photovoltaic (PV) panels and wind turbines with the
idea of reaching a certain target for the reduction of greenhouse gas emissions, but without imposing
the target itself. Descriptive scenario could then be used to assess the adequacy of the planned subsidy
scheme and the resulting environmental, social and economic implications. Such descriptive scenarios
are therefore crucial for translating the visions (how do we want the energy system to evolve?) that
can be created using normative scenarios to a specific policy portfolio (how will we make sure that the
desired transition will effectively be realized?).

In recent years, multiple studies have developed and analyzed scenarios for the evolution towards
a sustainable energy/electricity system, either focusing on the feasibility and implications of realizing
ambitious targets for renewable energy or the reduction of greenhouse gas (GHG) emissions (e.g., (8, 9,
10)), the role of specific technologies (e.g., (11, 12, 13)), the role of policy instruments (e.g., (14, 15)) or
the role of the market design (e.g., (16, 17, 18, 19, 20, 21). In addition to such academic studies, planning
models have been regularly deployed for providing direct policy support. In Europe, the PRIMES model
(22) in particular has been used frequently for developing European Union (EU) policy (23). In the
United States (US), the NEMS model of the Energy Information Agency (EIA) of the US Department
of Energy has been used regularly for underpinning energy policy. Among others, this model has been
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used to analyze the impact of the proposed American Clean Energy and Security Act of 2009, and is
used to generate the annual energy outlook (AEO) of the US (24). Other popular examples of long-
term energy-system planning models used for policy support are MARKAL/TIMES (25, 26, 27) (see
e.g., (28, 23, 29)), MESSAGE (30). In addition, certain models focus in detail on the evolution of the
electrical power system. Well known examples are the ReEDs model (31), the LIMES model (32) and
the Resource Planning Model (33).

1.2 Mathematical Models Used to Generate Descriptive Scenarios

In this paper, our focus is on the models used to generate descriptive scenarios. As stated above, the aim
of these scenarios is to describe the likely evolution of the energy/electricity system given that certain
policies and market designs are in place. To determine this likely evolution, many models aim to compute
the long-run or intertemporal market equilibrium.

Optimization models are a natural fit for generating normative scenarios. By maximizing welfare,
the cost-effective transition pathway from a societal perspective can be analyzed. However, optimization
models can and are also used to analyze the long-run or intertemporal market equilibrium. In that
regard, optimization models rely on the fact that the total surplus is maximized in the equilibrium found
in competitive markets where different economic agents aim to maximize their own profit (relating to
the famous invisible hand of Adam Smith) (26, 34, 35, 36). Thus, by maximizing the total surplus,
the competitive equilibrium can be computed. As stated by (26), this allows to “shift the model’s
rationale from a global, societal one (social welfare maximization) to a decentralized one (individual
utility maximization)”.

Optimization models have the main advantage that they can rely on fast and efficient solvers to study
model instances with the required large geographical, temporal and sectoral scope (35, 37, 38). Recently,
this has become increasingly relevant because a higher level of temporal, technical and spatial detail
is required to properly account for the challenges related to the integration of intermittent renewables
(39, 40). As a result, optimization models have remained the most popular tools for long-term energy-
system and power-system planning (41).

However, optimization models face a number of limitations in terms of the conditions for which they
can compute the market equilibrium. A first limitation is that optimization models implicitly assume
price-taking agents. As a result, an optimization model cannot be used to determine the equilibrium if
certain agents behave strategically (e.g., oligopoly situations). A second limitation of optimization models
is that they rely on maximizing the total surplus by integrating the area between the supply and demand
curve. In certain cases where demand and/or supply functions are represented by analytical expressions
(e.g., derived from econometric studies), the demand or supply function might not be integrable1. In
these cases, an optimization model cannot compute the equilibrium. A final limitation of optimization
models is optimization models cannot compute the equilibrium if certain policies (e.g., a VAT tax) or
market designs (e.g., minimum prices) are in place, or if the agents are assumed to have certain behavioral
characteristics (e.g., risk-averseness).

A variety of techniques has been used to compute the market equilibrium for those instances where an
optimization model cannot be used. A first technique that has been used regularly is to use an iterative
procedure in which an optimization model is solved and modified recursively until the market equilibrium
is found (Gauss-Seidel type of algorithms) (36). Greenberg and Murphy have for instance showed that
such an algorithm can be used to solve equilibrium problems in the presence of price regulations such
as tax programs, average cost pricing and price ceilings (42). The same approach has more recently
been used by (43) to analyze the impact of feed-in tariffs for renewables. Lately, it has become more
common to formulate equilibrium problems as mixed complementarity problems (MCPs), which, due to
advancements in solver algorithms, can now be solved reasonably fast (36, 44, 37). For instance, (45)
used an MCP to determine the long-run equilibrium under different emission allowance allocation rules.
(46) and (19) have formulated an MCP to compare energy-only and capacity market organizations when
investors are risk-averse. Another example can be found in (47) who developed an MCP for analyzing the
impact of introducing average cost pricing for a consortium of large industrial consumers. For simulating
the impact of certain types of strategic behavior, such as Stackelberg games, in which a strategic player
can anticipate the reaction of a number of followers, the equilibrium problem is typically formulated as
a bilevel problem. If there is a single leader, the equilibrium is typically formulated as a mathematical
problem with equilibrium constraints (MPEC). If there is competition between multiple leaders, the
equilibrium is typically formulated as a equilibrium problem with equilibrium constraints (EPEC) (see
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e.g., (48, 49, 50, 51) for examples analyzing the impact of different degrees of market power on the
long-run equilibrium). For a detailed description of these mathematical techniques, we refer to (44), and
(37).

1.3 Goal and Contribution

As discussed in the previous section, there are a number of conditions for which optimization models can-
not compute the market equilibrium. The fact that optimization models implicitly assume perfectly com-
petitive (i.e., price-taking) agents is well known, and can easily be communicated in non-mathematical
terms. In contrast, the exact limitations of optimization models in representing specific market designs,
policy instruments or other behavioral characteristics are less well known, and cannot easily be described
in non-mathematical terms. In the literature, these limitations are typically mentioned on a case-by-case
basis when such a limitation is encountered for the specific problem at hand (see the different examples
of problems that were solved using Gauss-Seidel type of iterative algorithms or MCPs above). To the
best of our knowledge, there is no general overview of the limitations of optimization models, and the
corresponding implications for determining the equilibrium in deregulated competitive but imperfect
energy markets. One exception is the recent paper of (36) that explains the limitations of optimization
models for computing the market equilibrium in a non-mathematical manner, and provides a list of
policy interventions that cannot be cast in an optimization model. However, the goal of their paper is to
introduce MCPs and the benefits these could have for energy-system models, rather than to present an
exhaustive overview of the limitations of optimization models. In addition, because a non-mathematical
approach is taken, it is difficult to generalize the presented examples of the limitations of optimization
models to other problems.

The goal of this paper is to present an overview of the possibilities and limitations of optimization
models for computing the market equilibrium when specific policies or market designs are in place, and
for different assumptions regarding the agents’ decision-making behavior. This paper complements the
literature (e.g., the recent work of (36)) by presenting the underlying mathematical reasons for these
limitations of optimization models and provide a framework which allows assessing whether a given
equilibrium problem could be cast into an optimization model. We restrict ourselves to imperfect energy
markets in which none of the agents behaves strategically, i.e., all agents are assumed to be price takers.
For an overview of different techniques for solving equilibrium problems where agents behave strategically,
we refer to (37).

This paper targets people of the energy-system and power-system modeling community who want to
gain insights into how optimization models represent market equilibria, what the limitations of optimiza-
tion models are to represent market equilibria and what other techniques could be used in such cases.
Increasing awareness of the inherent limitations of optimization models to solve equilibrium problems is
essential for deciding on a long-term strategy for the type of model to develop.

1.4 Outline

The remainder of this chapter is organized as follows. First, Section 2 analyzes the relation between
optimization problems and equilibrium problems and presents a framework to determine whether an
equilibrium problem can be cast into a system optimization model. This framework highlights a number
of limitations of optimization models. These limitations are subsequently illustrated in Section 3, which
presents topical examples of equilibrium problems containing policies, market designs and behavioral
characteristics that are relevant in the context of planning in deregulated electricity markets but cannot be
cast into a system optimization models. Finally, Section 4 summarizes and presents the main conclusions.

2 Limitations and Possibilities for Determining the Market Equi-
librium Using Optimization Models

The methodology used in this paper to show the possibilities and limitations of system optimization
models to compute market equilibria relies on the fact that (i) mixed complementarity problems (MCPs)
form a natural way to describe market equilibria (36, 52), and (ii) MCPs generalize the class of linear and
convex non-linear optimization problems with continuous variables. The latter implies that every linear
or convex non-linear optimization problem with continuous variables can be converted to an MCP, but
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the opposite does not hold (44). Hence, if a certain equilibrium problem can be formulated as an MCP,
and this MCP cannot be derived from converting a system optimization problem into its equivalent MCP,
we can conclude that this equilibrium cannot be computed directly by solving a system optimization
model 2. We restrict ourselves in this work to equilibrium problems with price-taking agents that can
be formulated as an MCP3.

By analyzing how equilibrium problem can be described as an MCP, and how a system optimization
model can be cast into its equivalent MCP, we will derive certain conditions that need to be fulfilled in
order for a system optimization problem to be able to compute the equilibrium. We will then interpret
these mathematical conditions from an economic/market perspective, and provide a framework allowing
modelers to easily check whether an equilibrium problem can be cast into an equivalent system opti-
mization model, and to determine how the corresponding objective function of the system optimization
model should look like.

The remainder of this sections is as follows: first Section 2.1 illustrates for a simple example of a
generation expansion planning problem how the equilibrium problem can be formulated as an MCP and
how a system optimization problem can be converted to an MCP. Next, Section 2.2 analyzes which
conditions must be fulfilled in order for an equilibrium problem to be cast into an system optimization
problem and the corresponding limitations for the use of optimization models for solving equilibrium
problems. Finally, Section 2.3 briefly highlights the equilibrium problems that can be solved using
optimization models.

2.1 Formulation of a Generation Expansion Planning Problem

2.1.1 Equilibrium problem.

Consider multiple price-taking generation companies (GenCos) i participating in a wholesale market. To
simplify the problem, assume that each GenCo has the option to invest in generation capacity capi of
a single technology, which is characterized by an annualized investment cost CCAPEX

i and a constant
generation cost COPEX

i . This generation capacity can be used to generate a power output geni,t during
every time step t (having a duration ∆t) within the year. The generated electric energy can be sold in
the market at a price pelt . The demand side in each time step t is represented by a given inverse demand
function f−1d,t (qt). Here, the equilibrium problem is to find the long-run equilibrium.

In this example, each GenCo i faces the problem of determining the investment and operational
decisions that maximize its long-run profits subject to (s.t.) certain constraints4:

max
capi,geni,t

∑

t

(geni,t∆tp
el
t )− capiCCAPEX

i −
∑

t

(
geni,tC

OPEX
i ∆t

)
(1a)

s.t. capi − geni,t ≥ 0 (γi,t) ∀t (1b)

geni,t ≥ 0 ∀t (1c)

capi ≥ 0 (1d)

In addition, the consumers aim to maximize their consumer surplus:

max
qt

∑

t

(∫ qt

0

f−1d,t (q′t)dq
′
t∆t

)
−
∑

t

(qt∆tp
el
t ) (2a)

s.t. qt ≥ 0 ∀t (2b)

Finally, the linking constraints need to be considered. These linking constraints are constraints that
link together the variables of the different optimization problems (and thus the decision variables of the
different agents). Typically, these are constraints that ensure that there is a balance between supply and
demand, and are therefore sometimes referred to as market clearing constraints. Aside from ensuring a
balance between the demand and supply of certain commodities, linking constraints are also frequently
used to reflect the scarcity of certain commodities or reflect policy constraints that cap the total con-
sumption/production of certain commodities. In this example, we only consider the balance between the
supply and demand of electricity: ∑

i

geni,t∆t = qt∆t ∀t (3)
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2.1.2 MCP Formulation.

To derive the MCP formulation of the equilibrium problem, the Karush-Kuhn-Tucker (KKT) conditions
of each optimization problem need to be determined. These KKT conditions are a set of equations and
inequalities that form a mathematical expression of the necessary conditions for the optimal solution
of an optimization problem. Under certain conditions, these KKT conditions are also sufficient. For
instance, for linear and convex quadratic optimization problems, the KKT conditions are both necessary
and sufficient. This means that any solution that satisfies the KKT conditions is effectively an optimal
solution of the optimization problem5 (44). For more information on deriving the KKT conditions, we
refer to Chapter 4 of (53). By combining the KKT conditions of all optimization problems and adding the
linking constraints, the MCP formulation of the equilibrium problem is derived. This MCP formulation
of the equilibrium problem is thus nothing else than a set of equations and inequalities that must be
fulfilled in the equilibrium. These equations and inequalities consist of conditions that must be satisfied
in order for the solution to reflect the optimal decision making of the agents involved, conditions that
reflect the constraints faced by each agent, and the linking constraints. Such an MCP can be solved
using commercial solvers, such as the PATH solver (44).

The MCP of the generation expansion problem is shown below. Here, we make use of the perpendicu-
lar operator ⊥. The presence of the perpendicular operator between two inequalities g(x) ≤ 0 and α ≥ 0
represents an additional equation stating that at least one of the inequalities should be an equality, i.e.,
g(x)α = 0.

pelt ∆t ≤ COPEX
i ∆t + γi,t ⊥ geni,t ≥ 0 ∀i, t (4a)

∑

t

(γi,t) ≤ CCAPEX
i ⊥ capi ≥ 0 ∀i (4b)

capi − geni,t ≥ 0 ⊥ γi,t ≥ 0 ∀i, t (4c)

f−1d,t (qt) ≤ pelt ⊥ qt ≥ 0 ∀t (4d)
∑

i

geni,t∆t = qt∆t ∀t (4e)

Eq. (4a)-(4c) represent the KKT conditions of the GenCos optimization problems, Eq. (4d) is the KKT
condition for the consumer and Eq. (4e) is a linking constraint that enforces a balance in the generation
and consumption of the commodity electricity.

From Eq. (4a), we can derive that when a certain agent i decides to generate electricity using a certain
technology, the price should be at least as high as the generation cost of that technology. If this is not the
case, the generator will decide not to generate electricity. Moreover, from Eq. (4c) and Eq. (4a), we can
deduce that if a technology is generating electricity, but less than its installed capacity, this plant clears
the market, and hence, the price equals the generation cost of that technology6. When a technology is
generating at maximal capacity, the price can be higher than the generation cost of that technology, and
the owners of the plants of that technology can earn infra-marginal rents (indicated by the dual variable
γi,t). In terms of investments, we can see from Eq. (4b) that an agent will only invest in capacity of
a certain technology if the infra-marginal rents that would be earned during the different time steps
are sufficient to cover the investment costs. Moreover, when an agent invests in a certain technology,
it will do so up to the point where the infra-marginal rents are just sufficient to cover the investment
costs. From Eq. (4d), it follows that the consumers consume up to the point where the inverse demand
function, i.e., their willingness to pay, equals the electricity price.
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2.1.3 Optimization Problem Formulation.

Considering the same GenCos and consumers, the solution yielding maximal total surplus is the solution
to the following optimization problem:

max
qt,capi,geni,t

∑

t

(∫ qt

0

f−1d,t (q′t)dq
′
t∆t

)
−
∑

i

capiC
CAPEX
i −

∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)
(5a)

s.t. capi − geni,t ≥ 0 (γi,t) ∀i, t (5b)

geni,t ≥ 0 ∀i, t (5c)

capi ≥ 0 ∀i (5d)

qt ≥ 0 ∀t (5e)
∑

i

geni,t∆t = qt∆t (λt) ∀t (5f)

This optimization problem can be solved directly using efficient optimization solvers. However, to illus-
trate the equivalence between the solution of the optimization problem (5) and the MCP formulation
of the equilibrium problem (4), we will convert the above optimization problem (5) to an MCP via its
KKT conditions. Note that in this case, there is only a single optimization problem and therefore the
linking constraints are internal constraints of this optimization problem. Hence, the MCP formulation
of the surplus maximization problem is simply the set of KKT conditions of the surplus maximization
problem, i.e.:

λt∆t ≤ COPEX
i ∆t + γi,t ⊥ geni,t ≥ 0 ∀i, t (6a)

∑

t

(γi,t) ≤ CCAPEX
i ⊥ capi ≥ 0 ∀i (6b)

capi − geni,t ≥ 0 ⊥ γi,t ≥ 0 ∀i, t (6c)

f−1d,t (qt) ≤ λt ⊥ qt ≥ 0 ∀t (6d)
∑

i

geni,t∆t = qt∆t ∀t (6e)

For the presented example, by noting that the dual variable of the market clearing condition (Eq. (5f))
of the optimization problem represents the equilibrium price (i.e., λt = pelt ), it becomes clear that the
MCPs (6) and (4) are equivalent. Hence, instead of having to solve the MCP, a faster computation of
the equilibrium is possible by simply solving the optimization problem (problem (5)) (44, 38, 36). Both
approaches to solving the equilibrium problem are schematically represented in Fig. 1.

As stated earlier, any linear or convex non-linear optimization problem with continuous variables (that
satisfy certain constraint qualifications) can be converted to an MCP via its KKT conditions, but it will
not always be possible to formulate an optimization problem of which the optimal solution represents
the equilibrium (44, 36). More specifically, when we stated earlier that an optimization model cannot be
used to compute the equilibrium in certain circumstances, we mean that it is not possible to formulate
an optimization problem such that the KKT conditions of this optimization problem correspond to the
MCP formulation of the equilibrium problem7.

2.1.4 A Closer Look at the Equivalence.

To gain insights into the limitations of optimization models, it is relevant to have a further look at how
the surplus maximization problem (problem (5)), via its KKT conditions, leads to the same MCP as the
MCP formulation of the equilibrium problem.

In this regard, it is of interest to observe that in the presented generation expansion problem, the
KKT conditions of the surplus maximization problem comprise the KKT conditions of each individual
agent’s optimization problem. The KKT conditions of each agent’s optimization problem reflect both
the constraints faced by each agent and the conditions for the optimal decision making of each agent.
The conditions for the optimal decision making in turn consist of three types of terms: costs/revenue
terms related to participation in the markets for which the prices are endogenously determined (i.e., the
endogenous markets), terms related to exogenously specified costs/revenues and terms related to the
shadow prices of the agent’s constraints. Applied to the KKT conditions of the GenCo in the generation
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Optimization 

problem 

agent 1 

Optimization 

problem 

agent 2 

Optimization 

problem 

agent I 

Linking constraints 

Nash equilibrium problem 

… 

Surplus maximization 

problem 

Solve Optimization problem 

KKT Conditions of optimization 

problem agent 1 

…
 

Solve MCP 

KKT Conditions of optimization 

problem agent 2 

KKT Conditions of optimization 

problem agent i 

Linking constraints 

Figure 1: Schematic of different approaches to solving a Nash equilibrium problem. The
dashed arrow indicates that not all equilibrium problems that can be formulated as a mixed
complementarity problem (MCP) can be solved by solving a single optimization model.

expansion planning problem (Eq. (4a)-(4c)), Eq. (4c) reflects the constraint faced by the agent and
Eq. (4a)-(4b) reflect the conditions for optimally deciding on the power generation in each time step
and the installed capacity respectively. In these conditions for optimal decision making, the term pelt ∆t

reflects the revenues from participating in the electricity market, the terms COPEX
i ∆t and CCAPEX

i are
exogenously specified operational and investment costs, and γi,t are the infra-marginal rents related to
the capacity constraint.

As shown in the example above, a surplus maximization problem directly integrates both the agents’
constraints8 (Eq. (5b)-(5e)) and the exogenously specified cost/revenue components (the terms capiC

CAPEX
i +∑

t(geni,tC
OPEX
i ∆t) in Eq. (5a)). Hence, the corresponding terms will appear identically in the KKT

conditions of the surplus maximization problem as in the KKT conditions of the agent’s optimization
problem.

The main difference relates to the terms reflecting the revenues/costs from the participation in the
endogenous markets. These revenue/cost terms related to the endogenous markets are explicitly repre-
sented in the objective function of each agent’s optimization problem (see e.g., the term

∑
t(geni,tp

el
t ∆t)

in Eq. (1)) and hence appear in the KKT conditions of the agents optimization problem. In contrast, in
the surplus maximization problem (5), no revenue or cost terms related to endogenous markets are spec-
ified. Nevertheless, the KKT conditions of the surplus maximization problem also contain these terms.
This is because the cost or revenue terms related to the endogenous markets now appear indirectly in
the KKT conditions of the surplus maximization problem via the linking constraints.

Each linking constraint integrated in a surplus maximization problem will thus indirectly describe a
market, i.e., both the price (dual variable of the linking constraint) and the variables receiving/having
to pay this price are indirectly specified via the linking constraints. In the example above, the linking
constraint ensuring a balance between the supply and demand of electricity indirectly specifies that every
unit of electricity generated in time step t, i.e., geni,t∆t, receives a payment λt. Similarly, every unit of
electricity consumed in time step t requires a payment of λt.

The information presented above is summarized in Fig. 2 and Fig. 3, which schematically illustrate
how the MCP formulation of an equilibrium problem and the MCP formulation of a cost minimization
problem is formed respectively. In addition, Fig. 4 gives a mathematical overview of the generic structure
of an optimization problem and an equilibrium problem and how both are cast to an MCP.
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Equilibrium problem

MCP formulation of equilibrium problem

Optimization problem agent 1

Optimization problem agent 2
...

Optimization problem agent I

Linking constraints

Objective function

Market terms Exogenous costs / values

Constraints
capi − geni,t ≥ 0 ∀t

geni,t ≥ 0 ∀t
capi ≥ 0

max
capi,geni,t

∑

t

(geni,t∆tp
el
t ) − capiC

CAPEX
i −

∑

t

(
geni,tC

OPEX
i ∆t

)

KKT Condistions of opti-
mization problem agent 1

KKT Condistions of opti-
mization problem agent 2

...

KKT Condistions of opti-
mization problem agent I

Linking constraints

Optimality conditions

Market terms Exogenious
costs/value terms

Dual con-
straint terms

Constraints
capi − geni,t ≥ 0 ⊥ γi,t ≥ 0 ∀t

0 ≤ geni,t ⊥ pelt ∆t ≤ COPEX
i ∆t + γi,t ∀t

0 ≤ capi ⊥ CCAPEX
i ≥

∑

t

(γi,t)

Figure 2: Schematic of how the mixed complementarity problem (MCP) formulation of an
equilibrium problem is formed.

2.2 Limitations of Optimization Models

2.2.1 Inherent Assumptions Made in System Optimization Models

The main limitation of optimization problems is related to duality. In the previous section, we have
shown that all revenues and cost terms related to the endogenous markets appear in the MCP derived
from the surplus maximization problem indirectly via the linking constraints and the corresponding dual
variables. These linking constraints thus not only represent certain physical or policy constraints of
the optimization problem, but also specify the remuneration in the markets implicitly formed around
each of these constraints. As such, optimization models cannot distinguish between a physical or policy
constraint on the one hand and the revenues and costs attached to the variables appearing in this
constraint via the market implicitly formed around this constraint on the other hand. This leads to
three assumptions that are inherently made in optimization models and are listed below:

1. all agents’ variables contributing to a certain linking constraint participate in a paid-as-cleared
market implicitly formed around this linking constraint. This implicitly formed market provides a
unique endogenously determined price (the dual variable of that linking constraint) that applies to
all variables contributing to that linking constraint9;

2. the endogenously determined market price does not directly influence the value of variables not
appearing in the corresponding linking constraint;

3. all agents have the same valuation of the revenues or costs related to the participation in a certain
market formed around a linking constraint.

In addition, optimization problems cannot contain dual variables in the primal problem formulation
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Cost minimization problem

Objective function

min
capi,geni,t

∑

i

capiC
CAPEX
i

+
∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)

Exogenous costs / values
∑

i

capiC
CAPEX
i +

∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)

Agents’ constraints

Linking constraints

capi − geni,t ≥ 0 (γi,t) ∀i, t
geni,t ≥ 0 ∀i, t
capi ≥ 0 ∀i

∑

i

geni,t∆t = Dt∆t (λt) ∀t

MCP formulation of cost minimization problem

Optimality conditions

Market terms Exogenious
costs/value terms

Dual con-
straint terms

Agents’ constraints

Linking constraints

0 ≤ geni,t ⊥ λt∆t ≤ COPEX
i ∆t + γi,t ∀i, t

0 ≤ capi ⊥ CCAPEX
i ≥

∑

t

(γi,t) ∀i

capi − geni,t ≥ 0 ⊥ γi,t ≥ 0 ∀i, t

∑

i

geni,t∆t = Dt∆t ∀i, t

Figure 3: Schematic of how the mixed complementarity problem (MCP) formulation of a
cost minimization problem is formed.

and can therefore not represent constraints of agents that contain endogenously determined market
prices. This leads to a fourth assumption inherently made in optimization models:

4. the decision space of each agent is not dependent on the endogenously determined market prices10.

If an equilibrium problem violates one of the above assumptions, the equilibrium problem cannot be
cast into a system optimization model. These inherent assumptions hence restrict the use of optimization
models for solving equilibrium problems.

2.2.2 Necessary Conditions.

The inherent assumptions adopted in optimization models, as discussed above, can be mathematically
expressed via two necessary conditions for an equilibrium problem to be cast into an optimization model.

The first condition relates to the inherent assumptions 1-3.
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Condition 1: A necessary condition for an equilibrium problem to be cast in a linear or non-linear
optimization problem with continuous variables is that for each agent i in the equilibrium problem,
the objective function θi(xi,γ) of its respective optimization problem can be formulated as:

θi(xi,γ) = F (x) +

M∑

m=1

γmvm(x) + ai(x−i,γ) ∀i, (7)

where xi and x−i are respectively the decision variables of agent i and the decision variables of
all agents except agent i. The decision variables of all agents are indicated by x. Finally, vm(x)
represents the mth linking constraints of the equilibrium problem with corresponding price γm.

If a function F (x) and functions ai(x−i,γ) can be found such that the above condition is satisfied
for all agents i, the function F (x) is the objective function of the optimization problem of which
the optimal solution represents the equilibrium.

This condition shows that in order for an equilibrium problem to be cast into a system optimization
problem (or by extension, any non-linear optimization problem with continuous variables), the terms con-
taining endogenously determined market prices in the objective function of each agent must correspond
to a strict format that relates to the linking constraints.

Condition 1 can be derived by demanding that the MCP derived from the surplus maximization
problem is identical as the MCP formulation of the equilibrium problem. By assuming that the sur-
plus maximization problem reflects the constraints faced by each agent as well as the physical/policy
constraints linking decision variables from multiple agents (these constraints must be incorporated in
the surplus maximization problem to ensure that the optimal solution to this problem is feasible), and
using the notation from Fig. 4, the following condition must be satisfied in order for both MCPs to be
identical11 (see Fig. 4):

∂F (x)

∂xi
+

Ni∑

ni=1

αni
i

∂gni
i (xi)

∂xi
+

M∑

m=1

γm
∂vm(x)

∂xi

=
∂θi(xi,γ)

∂xi
+

Ni∑

ni=1

αni
i

∂gni
i (xi)

∂xi
∀i. (8)

Here, the terms
∑Ni

ni=1 α
ni
i

∂g
ni
i (xi)

∂xi
relate to the constraints faced by agent i and, since these constraints

are represented in the agent’s optimization problem as well as the surplus maximization problem, thus
appear in both the KKT conditions of the surplus maximization problem and the KKT conditions of the
optimization problem faced by each agent i. As a result, these terms can be eliminated from the above
condition. Eq. (8) than reduces to:

∂F (x)

∂xi
+

M∑

m=1

γm
∂vm(x)

∂xi
=
∂θi(xi,γ)

∂xi
∀i. (9)

Here, F (x) represents the objective function of the surplus maximization problem. Hence, the term
∂F (x)
∂xi

appears in the KKT conditions of the surplus maximization problem via its objective function. In

contrast, the terms
∑M

m=1 γ
m∂vm(x)

∂xi
appear in the KKT conditions of the surplus maximization problem

via the linking constraints. Here, γm represents the dual variable of linking constraint m and thus
reflects the price of a certain implicitly created market. In the MCP of the equilibrium problem, the
only remaining terms in the above equation directly follow from the agents’ objective functions θi(xi,γ).
The agents’ objective functions typically directly comprise terms related to the market prices (γ). By
integrating both sides of the equation over the decision variables xi, we finally get the first condition as
presented above (Eq. (7)).

The fourth inherent assumption/limitation of optimization problems directly follows from the fact
that endogenously determined prices are dual variables of the surplus maximization problem, and hence
cannot appear in the primal problem formulation12. This is more formally presented in the following
condition:
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Condition 2: A necessary condition for an equilibrium problem to be cast in a linear or non-linear
optimization model with continuous variables is that for each agent i in the equilibrium problem,
the constraints gni

i faced by agent i are not a function of the endogenously determined market prices
γm.

2.2.3 Framework for Determining the Existence of a System Optimization Problem Equiv-
alent to the Equilibrium Problem.

The inherent assumptions adopted in system optimization models (as described in Section 2.2.1) as well
as the necessary conditions for an equilibrium problem to be cast into a system optimization model (as
described in Section 2.2.2) provide a framework to check whether a given equilibrium problem could be
cast into a system optimization model.

This framework consists of the following steps:

1. Formulate the objective function of all agents involved;

2. Formulate the physical or policy-related constraints linking the decision variables of the different
agents;

3. Check whether the inherent assumptions 1-3 hold/Check whether Condition 1 holds;

4. Formulate the constraints each agent faces;

5. Check whether inherent assumption 4/Check whether Conditon 2 holds.

It is important to note that this framework is applicable to equilibrium problems with price-taking
agents and without analytical supply/demand functions that might cause issues related to integrability.

As an example, this framework is applied to the investment planning problem described in Section 2.1.
As the optimization problems faced by the different agents (Eq. (1) and Eq. (2)), as well as the linking
constraints (Eq. (3)) have already been defined, we here restrict ourselves to steps 3 and 5. In this
problem, there is only a single linking constraint, which is of the form

∑
i geni,t∆t − qt∆t = 0 and of

which the dual variable represents the price of electricity pelt . By looking at the objective functions of the
generation companies (Eq. (1a)) and the consumers (Eq. (2a)), we can observe that all variables appearing
in the linking constraint indeed participate in a paid-as-cleared market, where the electrical energy
generated/consumed is remunerated/charged via a unique market price (i.e., the objective function of
the generators contain a term geni,t∆tp

el
t , and the objective function of the consumer contains a term

−qt∆tp
el
t ). Thus, the equilibrium problem is in line with the first inherent assumption made in system

optimization models. Furthermore, in the agents’ objective functions, we can see that the market price
for electricity does not impact the value of other variables aside from those appearing in the linking
constraints, which is in line with the second inherent assumption. In addition, the equilibrium problem
conforms to the third inherent assumption, since all agents have an identical valuation of the revenues or
costs related to participation in the electricity market. Finally, we can see that the equilibrium problem is
in line with the fourth inherent assumption made in optimization models, as the endogenously determined
electricty does not appear in any of the agents’ constraints.

More rigorously, we could also directly apply Condition 1 to derive the system optimization model
equivalent to the equilibrium problem. This is illustrated in the Appendix.

However, certain market imperfection introduced via the market design or policy interventions will
result in markets or agents that deviate from this necessary condition. This is for instance the case when
the value of a certain variable is determined outside of the market but at the same time contributes
to linking constraint representing a certain physical or political constraint. For example, a renewable
generator receiving a fixed feed-in tariff receives the feed-in tariff rather than the market price for every
unit of generated electricity. Nevertheless, the electrical power generated by this renewable generator
must enter in the linking constraint since it contributes to meeting the physical constraint requiring a
balance between demand and supply and impacts the market. Hence, not all variables appearing in the
linking constraint are values as in a paid-as-cleared market.

Another example of a deviation from these assumptions occurs if certain variables are remunerated
using certain market prices despite the fact that these variables do not contribute to the linking constraint
corresponding to that market. Consider as an example a subsidy scheme where investors in renewable
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generators receive a certain subsidy per unit of installed capacity that is dependent on the market price.
In this example, the capacity variable gets some remuneration that is dependent on the electricity price
even though the capacity variable does not enter in the linking constraint ensuring the balance between
supply and demand of electricity. More detailed illustrations of such problems are presented in Section 3.

2.3 Opportunities for Optimization Models

Despite the above-mentioned limitations of optimization models for determining the market equilibrium,
many markets and market distortions can be simulated using optimization models. A recent report
developed for the European Commission presents an overview of current market distortions alongside
the methodologies that can be used to model these distortions (54). It turns out that the majority of
the distortions listed in this report can be easily modeled using optimization models.

A first thing to note is that one can easily introduce additional markets (of the paid-as-bid format)
in a system optimization model by introducing additional linking constraints. As such, one could easily
simulate markets for capacity, ancillary services, renewable energy or emission permits. More specifi-
cally, one needs to specify the upper and/or lower bounds for the gross or net consumption of certain
commodities or services, and how different technologies contribute to meeting these bounds.

In addition, also certain market distortions can be simulated. For instance, one group of market
distortions relate to having a non-level playing field due for instance the lack of market access for certain
technologies, overly stringent eligibility criteria or product definitions. To model these distortions, one
can easily adapt the variables that can contribute to meeting a certain linking constraint (and hence
participate in the market) and/or the extent to which different variables can contribute. For example, if
storage technologies are not allowed to provide operating reserves, one can simply exclude storage related
variables in the linking constraint that imposes the balance between the provision and the requirement
for operating reserves.

Moreover, also other distortions listed in the report on distortions in European electricity markets,
such as price-caps and sub-optimal market coupling can be easily simulated using optimization models.
In addition, some incomplete markets can be simulated. For example, by considering the electricity
balance constraints only on zonal level, zonal pricing (and thus the lack of nodal price signals) can be
modeled (although this might imply that the solution is not technically feasible and hence redispatch is
required).

Finally, also common policy interventions such as volume based instruments (e.g., emission trading
schemes or green certificate systems) as well as direct subsidies and taxes (as long as the subsidy or tax
is not dependent on the endogenous prices) can be easily represented in optimization models.

As such, we would like to stress that it is a common misconception that optimization models compute
the market equilibrium assuming perfect competition. This misconception does likely originate from the
fact that system optimization models implicitly assume price-taking agents. However, note that to
ensure perfect competition, several conditions must be satisfied, of which price-taking behavior is only
one. Other conditions include, among others, the lack of externalities, no barriers to entry or exit and no
government intervention. Some of these market imperfections can clearly be simulated using optimization
models.

3 Illustrations

In this section, we illustrate the limitations of optimization models by providing three equilibrium prob-
lems related to investments planning that cannot be solved directly using a system optimization model.
More specifically, we provide an illustration of a policy intervention, a market design and agent behavior
that cannot be directly represented in a system optimization model.

The first illustration addresses the problem of determining the long-run equilibrium when a green
certificate scheme is introduced with a guaranteed minimum price for green certificates. This illustration
is handled in depth, and numerical results for simulations on a small test system are provided. The
second illustration looks at the problem of determining the long-run equilibrium in generation expansion
planning when residential consumers can invest in solar PV panels and net metering is applied. Finally,
the last illustration addresses several issues related to representing the equilibrium if the agents face
uncertainty.
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3.1 Minimum Price for Green Certificates

3.1.1 Problem Formulation.

Consider an equilibrium problem where a green certificate scheme is introduced to incentivize invest-
ments in renewable electricity generation. In this scheme, suppliers need to hand in green certificates
corresponding to a fraction FR of the electricity sold, and generators are provided Rg green certificates
for every MWh of electrical energy generated by RES. Generators and suppliers can then trade these
certificates in a market for green certificates (market price pGC). In addition, in order to reduce un-
certainties for investors in renewable electricity, generators are guaranteed a minimum price for their
green certificates. More specifically, generators have the option to sell their certificates to the distribu-
tion system operator (DSO), which is obliged to buy these certificates at the guaranteed minimum price
(PGC,DSO

g ). Note that this minimum price can differ for different technologies g. The DSO itself has no
obligation to hand in certificates. Hence, the DSO will sell all certificates that he was obliged to acquire
at the minimum price back to the market. Fig. 5 provides a schematic overview of the green-certificate
trading scheme. Among others, such a support system has been implemented in different regions in
Belgium.

GC
Generator

GC Market
(pGC)

DSO
(pGC,DSO

g )

electricty
supplier Authority

sel
ls

sells

se
ll

s

buys

set target

submit GC

set minimum prices

Figure 5: Green certificate trading scheme

In this illustration, we focus on the long-run equilibrium between the different GenCos. The opti-
mization problem faced by a profit-maximizing, price-taking GenCo i is as follows:

max
capi,g,geni,g,t,qDSO

i,g ,qMAR
i,g

∑

g

[∑

t

(geni,g,tp
el
t ∆t) + qMAR

i,g pGC + qDSO
i,g PGC,DSO

g

− capi,gCCAPEX
g −

∑

t

(geni,g,tC
OPEX
g ∆t)

]
(10a)

s.t. AFg,tcapi,g − geni,g,t ≥ 0 ∀g, t (10b)
∑

t

(Rggeni,g,t∆t)− qDSO
i,g − qMAR

i,g ≥ 0 ∀g (10c)

geni,g,t ≥ 0 ∀g, t (10d)

capi,g, q
DSO
i,g , qMAR

i,g ≥ 0 ∀g. (10e)

The problem is very similar to the example presented in Section 2.1. In contrast to the problem
described in Section 2.1, we here assume that each agent i can invest in different technologies g. Moreover,
we introduce an availability factor AFg,t to account for the renewable generators’ weather-dependent
ability to generate electricity in different moments in time. Aside from the revenues from selling their
electricity in the market for electricity, the generators of renewable energy receive additional revenues
by either selling their green certificates to the DSO or directly to the market. Here, qDSO

i,g and qMAR
i,g

represent the number of certificates received by agent i for a technology g that are sold to the DSO
and the market for green certificates respectively. Eq. (10c) ensures that each agent cannot sell more
certificates than those received by generating renewable electricity.
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In addition, decision variables of different agents (i.e., different GenCos) now come together in two
linking constraints: ∑

i

∑

g

(geni,g,t∆t) = Dt∆t (pelt ) ∀t, (11)

∑

i

∑

g

(qDSO
i,g + qMAR

i,g ) ≥ FR
∑

t

(Dt∆t) (pGC). (12)

Eq. (11) again states that total generation should equal the demand for electricity in every time step,
whereas Eq. (12) guarantees that sufficient green certificates are generated for the suppliers to meet their
obligation. Note that in the presented formulation of the equilibirum problem, the suppliers are not
represented as explicit agents. Rather, the suppliers are represented by an inelastic demand for green
certificates. In addition, also the DSO is not explicitly represented as a separate agent. This because we
assume that the DSO directly sells all the certificates he has acquired to the market (i.e., the amount of
certificates sold by the generators to the DSO equals the amount of certificates sold by the DSO to the
market).

3.1.2 Numerical Example.

In this section, the equilibrium problem (optimization problems defined by Eq. (10a)-(10e) with linking
constraints Eq. (11)-(12)) for a system inspired by the Belgian electricity system is implemented as an
MCP and solved using the Path solver. No existing capacity is considered, i.e., we are interested to find
the long-run equilibrium for a given RES quota (i.e., fraction FR) and guaranteed minimum prices for
green certificates of different origins.

Five technologies are considered: three conventional and dispatchable generators (base, mid and peak-
load), and two types of RES (onshore wind and solar PV). The considered techno-economic characteristics
of these technologies are presented in Tab. 1. The demand for electricity is assumed inelastic and is based
on historical data provided by the Belgian transmission system operator Elia. The average demand for
electricity in the considered system is about 10 GW, with peaks up to around 13.6 GW. Similar to
the time series for the demand, the time series for the generation by wind and solar PV are based on
historical data provided by (55). To restrict computation times, the operations of an entire year are
approximated by a representative set of 24 individual hours, which are selected using the methodology
described in (56).

Parameter Unit Base Mid Peak Wind PV
CCAPEX EUR

kW ·a 160 140 120 170 170
COPEX EUR

MWh 40 50 75 0 0
AF % 100 100 100 25.6 11.5
R − - - - 0.5 0.7
PGC,DSO EUR

GC - - - 50 183

Table 1: Techo-economic characteristics of the considered technologies

The results of the simulations for varying values of the RES quota are presented in Fig. 6. This
upper part of this figure shows the market price for green certificates, whereas the bottom part show the
installed capacity of solar PV panels and wind turbines.

Three zones of RES quota can be identified in Fig. 6, as indicated by the vertical lines. In a first zone,
corresponding to low RES quota, the RES quota constraint (Eq. (12)) is not binding, i.e., the guaranteed
minimum price for green certificates provides sufficient incentives to invest in more renewable capacity
than needed to reach the RES quota. Given the techno-economic assumptions adopted in this case, the
guaranteed support of 183 EUR

GC for solar PV panels results in an equilibrium in which about 12 GW
of solar PV capacity is installed. This installed capacity is sufficient to achieve a RES quota of almost
10%. As a result, if the actual RES quota is below this value, there is an excess of green certificates in
the market and the market price goes to zero. Thus, in this zone, the equilibrium is not impacted by the
quota constraint, and hence, the quota constraint could equally well be removed from the model.

In the second zone, the investments induced solely by the guaranteed minimum price for green
certificates are no longer sufficient to achieve the RES quota, i.e., the RES quota constraint becomes
binding and the market price for green certificates becomes positive. More specifically, the market price
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Figure 6: Market price for green certificates (top figure), and renewable capacity mix (bot-
tom figure) for an increasing RES quota

for green certificates jumps to the value that is just sufficient to achieve the RES quota. In terms of
investments, it can be observed that in this zone, wind turbines start to become part of the equilibrium
solution (and later even start to displace solar PV capacity). As can be observed in Fig. 6, for RES
quotas between 10% and 23%, the market price for green certificates lies between the minimum prices
offered to wind and solar PV respectively. In this zone, owners of PV installations will remain to sell
their green certificates to the DSO at the minimum price of 183 EUR

GC , whereas owners of wind turbines
will sell their green certificates to suppliers at the market price (which is lower than the minimum price
for green certificates offered to certificates originating from solar PV). With increasing amount of zero-
marginal cost RES being pushed into the system, the electricity prices during moments in which the
RES are generating electricity tend to become lower. Consequently, the revenues per unit of installed
RES capacity from selling electricity in the electricity market decrease with an increasing penetration of
RES (this is referred to as the so-called ”self-cannibalization” effect). As a result, the required support
(in the form of the green certificate price) to achieve the RES quota increases with more ambitious RES
quota.

In the third zone, corresponding to the highest RES quota, the market price of green certificates
reaches a point where it exceeds the minimum prices for green certificates for both solar PV and wind
power, and increasing investments in both solar PV and wind can be observed. Within this zone, both
owners of wind turbines and solar PV installations decide to sell their green certificates to suppliers at
the market price. Hence, within this zone, the minimum support prices no longer impact the equilibrium.
Therefore, the minimum support prices could be removed from the model.
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3.1.3 Why the Equilibrium Problem Cannot be Cast into an Optimization Problem

We now show that this equilibrium problem (in its general form) cannot be cast into an optimization
model and correspondingly solved. According to Condition 1 (Eq. (7)), in order for this problem to be
cast into an optimization model, there should exist a function F (x) and functions ai(x−i,γ), such that
Eq. (7) holds. Recall that in Eq. (7), the vector x refers to the primal decision variables of all agents
(i.e., cap, gen, qMAR and qDSO), while the vectors xi and x−i respectively refer to the decision variables
of agent i and the decision variables of all agents except agent i. Finally, the vector γ refers to the
dual variables of the linking constraints (i.e., pel and pGC). Given the objective function of each agents’
optimization problem (Eq. (10a)), and the linking constraints (Eq. (11)-(12)), Condition 1 becomes:

∑

g

[∑

t

(geni,g,tp
el
t ∆t) + qMAR

i,g pGC + qDSO
i,g PGC,DSO

g (13)

− capi,gCCAPEX
g −

∑

t

(geni,g,tC
OPEX
g ∆t)

]

=F (cap, gen, qDSO, qMARK)

+
∑

t

(
pelt
(∑

i

∑

g

(geni,g,t∆t)−Dt∆t)
))

+ pGC
(∑

i

∑

g

(
qDSO
i,g + qMAR

i,g

)
−
∑

t

(
Dt∆tFR

))

+ ai(cap−i,g, gen−i,g,t, q
DSO
−i,g , q

MARK
−i,g , pelt , p

GC)

By splitting up the terms related to the linking constraints into terms relating to agent i and the
terms related to the other agents, one obtains:

∑

g

[∑

t

(geni,g,tp
el
t ∆t) + qMAR

i,g pGC + qDSO
i,g PGC,DSO

g (14)

− capi,gCCAPEX
g −

∑

t

(geni,g,tC
OPEX
g ∆t)

]

=F (cap, gen, qDSO, qMARK)

+
∑

g

∑

t

(geni,g,tp
el
t ∆t) +

∑

t

(
pelt
(∑

−i

∑

g

(geni,g,t∆t)−Dt∆t

))

+
∑

g

qMAR
i,g pGC +

∑

g

qDSO
i,g pGC + pGC

(∑

−i

∑

g

(
qDSO
−i + qMAR

−i
)
−
∑

t

(
Dt∆tFR

))

+ ai(cap−i,g, gen−i,g,t, q
DSO
−i,g , q

MARK
−i,g , pelt , p

GC)

By recognizing that the function F() is the only remaining place where terms containing the primal
decision variables of generation company i can enter the right-hand side of the equation, we propose a
function F() as follows:

F (cap, gen, qDSO, qMARK) (15)

=−
∑

g

∑

i

capiC
CAPEX
g −

∑

g

∑

i

∑

t

(geni,g,tC
OPEX
g ∆t)

)
+
∑

g

∑

i

qDSO
i,g Bg
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, and substituting this into Eq. (14), one becomes, after rearranging, the following equation:

∑

g

[∑

t

(geni,g,tp
el
t ∆t) + qMAR

i,g pGC + qDSO
i,g PGC,DSO

g (16)

− capi,gCCAPEX
g −

∑

t

(geni,g,tC
OPEX
g ∆t)

]

=
∑

g

[∑

t

(geni,g,tp
el
t ∆t) + qMAR

i,g pGC + qDSO
i,g (pGC +Bg)− capi,gCCAPEX

g −
∑

t

(geni,g,tC
OPEX
g ∆t)

]

−
∑

−i

∑

g

cap−i,gC
CAPEX
g −

∑

−i

∑

g

∑

t

(gen−i,g,tC
OPEX
g ∆t) +

∑

−i

∑

g

(qDSO
−i,g Bg)

+
∑

t

(
pelt
(∑

−i

∑

g

(geni,g,t∆t)−Dt∆t

))

+ pGC
(∑

−i

∑

g

(
qDSO
−i,g + qMAR

−i,g
)
−
∑

t

(
Dt∆tFR

))

+ ai(cap−i,g, gen−i,g,t, q
DSO
−i,g , q

MARK
−i,g , pelt , p

GC)

Note that only the first line of the right-hand side of Eq. (16) now contains decision variables related
to agent i. Hence, by selecting the function ai() as:

ai(cap−i,g, gen−i,g,t, q
DSO
−i,g , q

MARK
−i,g , pelt , p

GC) (17)

=
∑

−i

∑

g

cap−i,gC
CAPEX
g +

∑

−i

∑

g

∑

t

(gen−i,g,tC
OPEX
g ∆t)−

∑

−i

∑

g

(qDSO
−i,g Bg)

−
∑

t

(
pelt
(∑

−i

∑

g

(gen−i,g,t∆t)−Dt∆t

))

− pGC
(∑

−i,g

(
qDSO
−i,g + qMAR

−i,g
)
−
∑

t

(
Dt∆tFR

))

, and substituting this in Eq. (16), one becomes:

∑

g

[∑

t

(geni,g,tp
el
t ∆t) + qMAR

i,g pGC + qDSO
i,g PGC,DSO

g (18)

− capi,gCCAPEX
g −

∑

t

(geni,g,tC
OPEX
g ∆t)

]

=
∑

g

[∑

t

(geni,g,tp
el
t ∆t) + qMAR

i,g pGC + qDSO
i,g (pGC +Bg)

− capi,gCCAPEX
g −

∑

t

(geni,g,tC
OPEX
g ∆t)

]

From this equation, it can be seen that only if it would be possible to determine a value Bg, such
that pGC + Bg = PGC,DSO

g holds, the optimization problem, with objective function F(), would solve

the equilibrium problem13. However, the market price for green certificates (pGC) is not known a priori,
making it generally not possible to determine the value for parameter Bg such that the optimization
model solves the equilibrium problem.

From a less mathematical perspective, one could also observe that the equilibrium problem cannot
be cast into an equivalent optimization model because the equilibrium problem is not in accordance with
the first assumption inherently made in system optimization models, as stipulated in Section 2.2.1. More
specifically, not all variables appearing in the linking constraint ensuring the achievement of the RES
quota (Eq. (12)) participate in a paid-as-cleared market for green certificates. Although the variables
qDSO
i,g and qMAR

i,g both contribute equally to meeting the linking constraint for the supply of green

certificates, the variable qDSO
i,g does not receive the market price.

Aside from formulating the equilibrium problem as an MCP and solving the MCP, another way to
solve the equilibrium problem is to make use of an iterative algorithm relying on the fact that the op-
timization problem defined above is almost equivalent to the equilibrium problem. In such an iterative

20



algorithm, an initial value for Bg is estimated, the optimization problem is solved, and Bg is updated
based on the observed market prices for green certificates in that simulation. Subsequently, the opti-
mization models is solved again, the values for Bg are again updated, and this process is continued until
convergence is reached.

In is of interest to note that there are situations in which an optimization model could directly provide
the solution to the equilibrium problem. A first situation is if one knows a priori that the minimum
prices offered by the DSO will incentivize more investments in renewable generators than needed to reach
the imposed target, i.e., when one is in the first zone described in Section 3.1.2. In this case, the market
price for green certificates will be zero; and hence the parameter value Bg can be taken equal to the price
offered by the DSO (and the RES quota constraint could be dropped from the model formulation).

A second situation is when one knows a priori that the market price for green certificates will be
higher than the minimum price offered for green certificates for all technologies, i.e., when one is in the
third zone described in Section 3.1.2. In this case, one can safely assume that all green certificates will
be sold directly to the market. Hence, the term +qDSO

i,g (pGC + Bg) in the objective function of the

optimization problem as well as the term +qDSO
i,g PGC,DSO

g in the objective function of agent i can be
removed, making both problems equivalent.

However, in many cases, it will not be straightforward to determine a priori whether one of these
situations will occur. In addition, one still would need to use an iterative algorithm to find the solutions
in the middle zone described in Section 3.1.2. It must furthermore be noted that the presented case is
simplified. In actual large-scale cases, other factors might complicate things further. For instance, if
we would aim to find the intertemporal equilibrium instead of the long-run equilibrium (corresponding
to the greenfield situation), it could perfectly well be that generators of renewable electricity sell their
electricity at the guaranteed minimum price for a number of years, after which the market price for green
certificates exceeds the minimum price, and generators switch to sell their electricity to the market. In
these situations, solving the equilibrium problem using an iterative algorithm, in which an optimization
problem is solved repeatedly, is likely to become highly cumbersome. In contrast, if the equilibrium
problem is formulated as an MCP, it could still be directly solved.

3.2 Other Illustrations

3.2.1 Net Metering.

Consider an equilibrium problem where, in addition to the generators competing on the wholesale level,
residential consumers j can decide to invest in solar PV panels. For sake of simplicity, we assume that
all consumers have the option to invest in solar PV panels. We furthermore assume that all residential
consumers have net metering contracts with their suppliers. The suppliers are not explicitly modeled, but
we assume that these suppliers offer a single retail price pel,RT

t to all consumers/prosumers regardless
of their consumption (and generation) patterns, i.e., consumers are billed based on their annual net
electrical energy consumption.

Each consumer j then faces the problem of minimizing its costs for electricity by deciding whether
to buy all electricity via the suppliers or generate some electricity themselves by investing in solar PV
panels:

min
capPV

j ,genPV
j,t

pel,RT
∑

t

(
(Dj,t − genPV

j,t )∆t

)
+ CINV,PV

j capPV
j , (19a)

s.t. genPV
j,t ≤ capPV

j CFPV
j,t ∀t, (19b)

capPV
j , genPV

j,t ≥ 0. (19c)

Here, genPV
j,t and Dj,t are respectively the average electrical power generated and consumed by consumer

j during time interval t. In addition, the parameter CFPV
j,t represents the capacity factor of the solar

PV panels within this time interval.
The optimization problem faced by each GenCo i operating in the wholesale markets is as follows:

max
capi,geni,t

∑

t

(
geni,t(p

el,WS
t − COPEX

i )∆t

)
− capiCCAPEX

i (20a)

s.t. geni,t ≤ capi ∀t, (20b)

capi, geni,t ≥ 0, (20c)
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, where pel,WS
t represents the average wholesale electricity price during time interval t.

The linking constraint representing the balance between supply and demand is as follows:

∑

i

geni,t∆t =
∑

j

(
(Dj,t − genPV

j,t )∆t

)
(pel,WS

t ) ∀t. (21)

For sake of simplicity, we have assumed here that the total demand for electricity comes from residential
consumers.

Finally, we assume that the retail price is determined by the suppliers as the volume weighted whole-
sale price of the net consumption of all consumers increased by a margin for suppliers (T supp) and the
transmission and distribution tariffs (T trans and T distr).

pel,RT =

∑
j,t

(
(Dj,t − genj,t)pel,WS

t ∆t

)
∑

j,t

(
(Dj,t − genj,t)∆t

) + T supp + T trans + T distr (22)

Defining an optimization problem that directly solves this equilibrium problem is not possible. This
because the first assumption inherently made by optimization models is again violated in this example.
Specifically, in this equilibrium problem, the solar PV generation is not remunerated at the paid-as-
cleared wholesale market price (i.e., the dual variable of Eq. (21)), even though the variable for solar
generation does contribute to this linking constraint. As such, an optimization model cannot directly
simulate the market distortion related to having average prices. Note that incorporating the margin
for suppliers as well as the transmission and the distribution charges poses no problem as long as these
additional charges are assumed independent of the market outcome (i.e., the market prices).

3.2.2 Decision Making under Uncertainty.

In liberalized and deregulated electricity markets, GenCos face many uncertainties. These include among
others the uncertainty regarding future fuel prices, technological development, demand growth, policy
interventions, and the decisions made by competitors (46, 57). GenCos can account for these uncertainties
in the investment planning problem by considering a number of possible scenarios, where each scenario
represents one possible realization of the uncertain parameters.

Assuming risk-neutral GenCos, the objective of each GenCo i is to maximize its expected profits.
Given a set of scenarios w ∈ Ω, each with a probability of πw, the objective function becomes:

max
capi,geni,t,w

∑

w

πw

[∑

t

(
geni,t,w(pelt,w − COPEX

i,w )∆t

)
− capiCCAPEX

i

]
. (23)

The market clearing constraint is now imposed for every time step and scenario.

∑

i

geni,t,w∆t = Dt,w∆t (πwp
el
t,w) ∀t, w (24)

This stochastic equilibrium problem can be cast into a stochastic system optimization problem in which
the objective function is to maximize the expected total surplus (as shown in (38)). Note that in such
a stochastic surplus maximization problem, the dual variable of the linking constraint (Eq. (24)) can be
interpreted as the probability-weighted electricity price, as indicated between brackets. Following the
first necessary condition for an equilibrium problem to be cast in an optimization problem (Eq. (7)), the
objective function of the GenCo should thus contain the terms

∑
t,w geni,t,w∆tπwp

el
t,w. As can be seen

from Eq. (23), this is indeed the case in this example.
However, a first issue arises if the expectations of the agents towards the uncertain parameters are

not homogeneous, i.e., when different agents attach a different probability to a particular scenario (e.g.,
one agent believes high carbon prices in the future are unlikely while another agent does not). In this
case, an optimization model cannot be used to compute the equilibrium. In this equilibrium problem, the
agents do participate in a paid-as-cleared electricity, which is in correspondence to the linking constraint
demanding a balance between demand and supply in every time step and scenario (Eq. (24)). However,
the different agents will value the hypothetical revenues that would be obtained in a given scenario
differently as they attach different probabilities to the possibility that that scenario will effectively be
realized. This is not in line with the third inherent assumption made in optimization models (see
Section 2.2.1).
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A second issue arises if agents are assumed risk averse. Consider as an example that each GenCo
aims to maximize their expected profits subject to the constraint that the potential loss cannot exceed
a certain threshold Ti. The objective function of each agent remains to be represented by Eq. (23), but
now each agent faces additional constraints:

∑

t

(
geni,t,w(pelt,w − COPEX

i,w )∆t

)
− capiCCAPEX

i ≥ −Ti ∀w. (25)

These constraints contain dual variables. Therefore, these constraints cannot be represented directly in
a system optimization model, as indicated by Condition 2 in Section 2.2.2. A similar result can be found
when more advanced risk measures such as the conditional value at risk are used to model risk-averse
behavior. For a detailed treatment of risk in equilibrium investment planning problems, we refer to
(46, 34, 58).

Most energy-system and power-system optimization models do not endogenously evaluate the uncer-
tainty and the associated risk. Rather, an expectation of the involved risk is frequently reflected in the
choice of the discount rate used. This discount rate then reflects both the cost of acquiring capital and
a risk premium. Because both the cost of acquiring capital and the involved risk can differ for different
agents and different technologies/projects, the discount rates (i.e., the hurdle rates) used to evaluate the
profitability of possible investments differs from project to project.

Given that different discount rates di are used for different projects, the objective function of the
multi-period investment planning problem faced by GenCo i becomes:

max
capi,y,geni,y,t

∑

y

1

(1 + di)y

(∑

t

(
geni,y,t(p

el,WS
y,t − COPEX

i,y )∆t

)
− capiCCAPEX

i,y

)
(26)

Here, the index y is added to represent different years in the planning horizon. For simplicity of notation,
we again assume that each agent can invest only in a single technology, and that the discount rate is
only dependent on the characteristics of the agent and the choice of technology.

Due to the fact that different agents apply different discount rates di, the perceived value of generating
a certain amount of electricity in a specific future time period is different for each agent despite the fact
that there is a unique price for electricity in each period. This violates the third inherent assumption made
in optimization models (in a similar fashion as the stochastic model with heterogeneous expectations
detailed above). As a result, optimization models cannot be used to compute the equilibrium when
different projects are evaluated using different discount rates14. For a detailed discussion of this issue,
we refer to (35).

3.2.3 Additional Illustrations.

While it is not our ambition to provide an exhaustive overview of market designs, policy interventions
and behavioral traits that require MCP or other types of models, Tab. 2 lists some equilibrium prob-
lems treated in this text or encountered in the literature that cannot be cast into and solved using an
optimization model. In addition, this table indicates for each of these problems which of the inherent
assumptions in system optimization models is violated.
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Implicit assumption
violated

Market design Policy intervention Agent behavior

1. All variables
contributing to a certain

linking constraint
participate in a

paid-as-cleared-market

Net metering,
Average price
contracts (47)

Minimum price for
green certificates,

Feed-in tariffs (43),
VAT tax

-

2. The endogenously
determined market price

cannot determine the value
of variables not appearing

in the corresponding
linking constraint

Net metering,
Average price
contracts (47)

Grandfathering of
emission allowances
for new installations

(45, 46)

-

3. All agents have the
same valuation of the

revenues from participating
in the market represented

by a linking constraint

- - Heterogeneous perception
of uncertainties,

Risk-averse investors
(34, 46, 58)

4. The decision space of
each agent is not

dependent on endogenously
determined market prices

- - Risk-averse investors
(34, 46, 58), maximum

payback time

Table 2: Examples of market designs, policy interventions and agent behavior that cannot be
represented in optimization models. The first column indicates which inherent assumption
of the optimization model is violated for each of the presented examples. See Section 2.2.1
for a more detailed discussion regarding these inherent assumptions.
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4 Summary and Conclusions

In the context of liberalized and deregulated energy markets, long-term energy-system or power-system
optimization models are used for two distinct purposes. A first is to address normative questions by
analyzing how the optimal transition of the energy/electricity system looks like under certain assump-
tions. A second is to describe the likely/expected evolution of the energy/electricity system when certain
policies are put into place (i.e., a descriptive perspective is taken). In this regard, optimization models
rely on the fact that in competitive markets the surplus is maximized in the market equilibrium. As
such, the market equilibrium can be computed by maximizing total surplus.

While optimization models can be used to compute the market equilibrium in markets in which
not all conditions for perfect competition are satisfied, there are a number of limitations for the use of
optimization models. One well-known limitation is that optimization models implicitly assume price-
taking agents. However, even if all agents are assumed price takers, optimization models face restrictions
in terms of representing certain market designs, policy interventions or behavioral characteristics of
agents, hence limiting their applicability for generating descriptive scenarios.

This paper aims to help modelers to gain insights into the ability and limitations of optimization
models for computing market equilibria. To this end, we have provided a framework (both mathematical
and non-mathematical) that allows modelers to check whether a certain equilibrium problem can be cast
into an optimization model. In addition, we have presented a number of topical examples of equilibrium
problems that cannot be cast into a system optimization model. In this paper, we have restricted
ourselves to equilibrium problems with price-taking agents. For an overview of different techniques for
solving equilibrium problems where agents behave strategically, we refer to (37). Insights into the abilities
and limitations of optimization models are important to decide on a long-term strategy for the type of
model to develop. This is particularly important given that setting up energy-system and power-system
optimization models is resource intensive.

According to Condition 1 (Eq. (7)), in order for the equilibrium problem (Eq. (1)-(3)) to be cast into
an optimization model, there should exist a function F (x) and functions ai(x−i,γ), such that Eq. (7)
holds. Recall that in Eq. (7), the vector x refers to the primal decision variables of all agents (i.e., cap,
gen and q), while the vectors xi and x−i respectively refer to the decision variables of agent i and the
decision variables of all agents except agent i. Finally, the vector γ refers to the dual variables of the
linking constraints (i.e., pel).

Given the linking constraints of the equilibrium problem (Eq. (3)), applying Condition 1 (Eq. (7))
for generation company agent i, provides following condition:

∑

t

(geni,t∆tp
el
t )− capiCCAPEX

i −
∑

t

(geni,tC
OPEX
i ∆t) (27)

=F (cap, gen, q)

+
∑

t

(
pelt
(∑

i

(geni,t∆t)− qt∆t)
))

+ ai(cap−i, gen−i,t, qt, p
el
t )

By splitting up the terms related to the linking constraints into terms relating to generation company
i and the terms related to the other agents, one obtains:

∑

t

(geni,t∆tp
el
t )− capiCCAPEX

i −
∑

t

(geni,tC
OPEX
i ∆t) (28)

=F (cap, gen, q)

+
∑

t

(geni,t∆tp
el
t ) +

∑

t

(
pelt
(∑

−i
(gen−i,t∆t)− qt∆t

))

+ ai(cap−i, gen−i,t, qt, p
el
t )

By recognizing that the function F() is the only remaining place where terms containing the primal
decision variables of generation company i can enter the right-hand side of the equation, we propose a
function F() as follows:

F (cap, gen, q) = −
∑

i

capiC
CAPEX
i −

∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)
+G(q) (29)
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, where G() is a function of the decision variable of the consumer. By subsituting the proposed function
F() into Eq. (28), one becomes, after rearranging, the following equation:

∑

t

(geni,t∆tp
el
t )− capiCCAPEX

i −
∑

t

(geni,tC
OPEX
i ∆t) (30)

=
∑

t

(geni,t∆tp
el
t )−

∑

i

capiC
CAPEX
i −

∑

t

(
geni,tC

OPEX
i ∆t

)

+G(q) +
∑

t

(
pelt
(∑

−i
(gen−i,t∆t)− qt∆t

))
−
∑

−i

∑

t

(
gen−i,tC

OPEX
−i

)

+ ai(cap−i, gen−i,t, qt, p
el
t )

By selecting the function ai() as:

ai(cap−i, gen−i,t, q, p
el
t )−G(q)−

∑

t

(
pelt
(∑

−i
(gen−i,t∆t)− qt∆t

))
+
∑

−i

∑

t

(
gen−i,tC

OPEX
−i

)
(31)

, and substituting this in Eq. (30), it can be seen that the condition holds for generation company i (and
by extension for all generation companies).

However, Condition 1 (Eq. (7)) should also hold for the consumer. Given the consumer’s objective
function (Eq. (2a)), the linking constraint (Eq. (3)), and the proposed function F() (Eq. (29)), Condition
1 becomes:

∑

t

(∫ qt

0

f−1d,t (q′t)dq
′
t∆t

)
−
∑

t

(
qt∆tp

el
t

)
(32)

= +G(q)−
∑

i

capiC
CAPEX
i −

∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)

+
∑

t

(
pelt
(∑

i

(geni,t∆t)− qt∆t)
))

+ b(capi, geni,t, p
el
t )

After rearranging, this gives:

∑

t

(∫ qt

0

f−1d,t (q′t)dq
′
t∆t

)
−
∑

t

(
qt∆tp

el
t

)
(33)

= +G(q)−
∑

t

(
qt∆tp

el
t

)

−
∑

i

capiC
CAPEX
i −

∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)
+
∑

t

(
pelt
(∑

i

(geni,t∆t)
))

+ b(capi, geni,t, p
el
t )

By taking the function G() as:

G(q) =
∑

t

(∫ qt

0

f−1d,t (q′t)dq
′
t∆t

)
(34)

, and the function b() as:

b(capi, geni,t, p
el
t ) =

∑

i

capiC
CAPEX
i +

∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)
−
∑

t

(
pelt
(∑

i

(geni,t∆t)
))

(35)

, Condition 1 is shown to be satisfied also for the consumer.
Hence, the solution of a system optimization problem with the objective functionto maximize equal

to:

F (cap, gen, q) =
∑

t

(∫ qt

0

f−1d,t (q′t)dq
′
t∆t

)
−
∑

i

capiC
CAPEX
i −

∑

i

∑

t

(
geni,tC

OPEX
i ∆t

)
(36)

, and as constraints the constraints faced by each agent as well as the linking constraint, is a solution to
the equilibrium problem.
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Endnotes

1. Specifically, this occurs if there are multiple inverse demand/supply functions that are asymmetric,
i.e., the partial derivatives of the inverse demand/supply functions of two commodities to a change
in the quantity of the other commodity are not equal. Asymmetric inverse demand/supply functions
only occur if there are multiple inverse/demand functions and some of these functions have cross-price
elasticities. Multiple inverse demand functions with cross-price elasticities may be needed if there are
multiple commodities (e.g., a high price for electricity might increase the demand for natural gas) or
different time steps (e.g., a high price for electricity in a certain time period might reduce the demand for
electricity in this time period but also increase the demand for electricity in subsequent time periods).
Typically, energy-system and power-system optimization models consider the demand to be fixed or
only consider own-price elasticities. We do not focus on this limitation of optimization models in the
remainder of this text. For the interested reader, we refer to Chapter 4 of (44) for a more detailed
treatment of this limitation of optimization models.
2. As will be discussed later, it might be possible to develop algorithms in which a system optimization

model needs to be solved repeatedly until it converges to the equilibrium. However, the optimization
model in itself, i.e., without the iterative loop, cannot solve the equilibrium problem. In addition, one
might argue that the complementarity constraints of any MCP can be converted to a non-linear problem
or a mixed integer program. However, the formulation of those resulting optimization problems reflect the
KKT conditions of the MCP and hence differ strongly from the conventionally used system optimization
models.
3. Not every equilibrium problem can be formulated as an MCP. Certain type of equilibria, such as

Stackelberg equilibria, cannot be formulated as an MCP. Since MCPs generalize the group of linear
or convex non-linear optimization problems with continuous variables, these equilibria can also not be
solved directly using a non-linear optimization problem with continuous variables. Stackelberg equilibria
are commonly formulated as MPECs or EPECs and are often used to model the strategic behavior of
an agent that anticipates the reaction of other agents when determining his own actions. These types
of equilibria are out of the scope of this work. For a detailed description of these type of problems, we
refer to (37, 44).
4. Note that we consider both producers and consumers to be price takers. The price-taking behavior

follows from the fact that the price pelt enters as a parameter in their respective optimization problems,
i.e., although the price depends on the agents’ decisions and hence is an endogenous variable of the
equilibrium problem, within each agent’s optimization problem, the price is considered to be a parameter
which is independent from its own decisions.
5. For certain type of problems, such as (mixed) integer programs, the KKT conditions are not mean-

ingful, i.e., the KKT conditions are not necessary conditions for the optimal solution. The inability to
represent integer variables is a main limitation of MCPs (44).
6. In this example, we do not consider the need for ancillary services such as spinning reserve require-

ments, and the corresponding interest to operate plants below the rated capacity in order to be able to
provide these services.
7. Although it might not be possible to formulate an optimization problem such that the KKT con-

ditions of this optimization problem are identical to the MCP formulation of the equilibrium, it can be
possible to determine the equilibrium via iterative algorithms in which the optimization model is solved
repeatedly and parameters are adapted. Such iterative algorithms have been used frequently (36) (see
e.g., (43, 35) for recent examples). However, the need to solve the optimization problem repeatedly leads
to high computational costs. In addition, these iterative algorithms might face convergence issues (35).
A detailed discussion of such iterative algorithms and other solution techniques for equilibrium problems
are out of the scope of this chapter.
8. If this is not the case, the solution to the optimization problem might violate the constraints faced

by one or more agents. In this case, the solution of the optimization problem cannot be a solution to
the equilibrium problem.
9. Note that this does not imply that all variables contributing equally to a certain linking constraint

should get the same remuneration/cost in total. This because these variables can get additional value
(either by appearing in other linking constraints or via exogenously specified costs/revenue terms), which
might not be the same for different variables. E.g., certain technologies can get a fixed subsidy on top
of their revenues from selling their electricity in the market.
10. As discussed in Section 2.1 presenting the generation expansion planning problem, the optimal
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decisions of an agent are dependent on the outcome of the markets (e.g., a generator will not decide
to generate electricity unless the price of electricity covers at least its generation costs). However, the
decision space of each agent, i.e., the feasible area of its optimization problem, in the presented example
is independent of the market prices.
11. Note that this condition must hold for the problem formulation in general, and thus not only at
optimality.
12. From a different perspective, the first limitation can be considered to also directly follow from this
fact, since if the objective function of the surplus maximization problem could contain dual variables,
this would allow adapting the terms containing endogenously determined prices in the KKT conditions
by adding additional terms to the objective function.
13. Note that the objective function relates to a maximization problem and can be understood as maxi-
mizing negative costs. The parameter Bg can be interpreted as a premium for green certificates, i.e., an
additional remuneration on top of the market price.
14. Nevertheless most optimization models approximate the impact of varying discount rates by altering
the capital costs of different technologies based on the assumed hurdle rates for the different technologies.
As shown in (35), the accuracy of this approximation depends on how the projected revenues vary over
the lifetime of the project.
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[12] D. Martinsen, J. Linssen, P. Markewitz, S. Vögele, CCS: A future CO2 mitigation option for Germany? A
bottom-up approach, Energy Policy 35 (4) (2007) 2110 – 2120 (2007). doi:https://doi.org/10.1016/j.

enpol.2006.06.017.

[13] L. Hirth, The optimal share of variable renewables. how the variability of wind and solar power affects their
welfare-optimal deployment, Tech. rep., Fondazione Eni Enrico Mattei Working Papers (October 2013).

28

http://ec.europa.eu/competition/sectors/energy/overview_en.html
http://ec.europa.eu/competition/sectors/energy/overview_en.html
https://www.iit.comillas.edu/~pedrol/documents/ej08.pdf
http://iea-retd.org/wp-content/uploads/2013/07/RE-ASSUME_IEA-RETD_2013.pdf
http://iea-retd.org/wp-content/uploads/2013/07/RE-ASSUME_IEA-RETD_2013.pdf
http://iea-retd.org/wp-content/uploads/2013/07/RE-ASSUME_IEA-RETD_2013.pdf
http://www.sciencedirect.com/science/article/pii/S0301421505003460
http://www.sciencedirect.com/science/article/pii/S0301421505003460
https://doi.org/https://doi.org/10.1016/j.enpol.2005.12.006
http://www.sciencedirect.com/science/article/pii/S0301421505003460
https://www.eia.gov/outlooks/aeo/nems/documentation/integrating/pdf/m057(2013).pdf
https://www.eia.gov/outlooks/aeo/nems/documentation/integrating/pdf/m057(2013).pdf
http://www.sciencedirect.com/science/article/pii/S0360319908000888
http://www.sciencedirect.com/science/article/pii/S0360319908000888
https://doi.org/http://dx.doi.org/10.1016/j.ijhydene.2008.01.031
http://www.sciencedirect.com/science/article/pii/S0360319908000888
http://www.sciencedirect.com/science/article/pii/S0301421512009263
http://www.sciencedirect.com/science/article/pii/S0301421512009263
https://doi.org/http://dx.doi.org/10.1016/j.enpol.2012.10.045
http://www.sciencedirect.com/science/article/pii/S0301421512009263
http://www.sciencedirect.com/science/article/pii/S036031990801402X
http://www.sciencedirect.com/science/article/pii/S036031990801402X
https://doi.org/http://dx.doi.org/10.1016/j.ijhydene.2008.10.083
https://doi.org/http://dx.doi.org/10.1016/j.ijhydene.2008.10.083
http://www.sciencedirect.com/science/article/pii/S036031990801402X
https://doi.org/https://doi.org/10.1016/j.enpol.2006.06.017
https://doi.org/https://doi.org/10.1016/j.enpol.2006.06.017
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